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Abstract
For soft spheres the number of minima on the potential energy landscape is
independent of the volume, and the shape of each basin in the potential energy
landscape varies with volume in a predictable way. Two simple assumptions,
(1) that the basins are harmonic and (2) that the distribution of basin depths is
Gaussian, yield a model for the cold dense states of matter: crystals, glasses, the
supercooled fluid and the glass transition. The model agrees with simulation
data at temperatures below freezing but fails above the freezing temperature,
where the harmonic approximation breaks down.

1. Introduction

The focus of this discussion is the potential energy landscape formalism [1–3] which expresses
the free energy of a fluid in terms of the free energy of the many glasses, or inherent structure
basins, that the fluid samples. Two-dimensional pictures of the multi-dimensional potential
energy landscape [3],often rather fanciful,have inspired many discussions [3, 4] of the dynamic
and thermodynamicproperties of liquids. The same formalism applies with density, rather than
energy, as the independent variable and a picture [5] of the density landscape for hard discs
pre-dates the more familiar potential energy landscape pictures.

Over the last decade,methods have been developed to measure the entropy and free energy,
Ag , of model glasses in simulation experiments, to quantify the density and energy landscapes.
To outline the general strategy [6–8] of these studies, the fluid free energy is expressed as

A f (V , T ) = Ag(V , T, z) − T Sc(z) (1)

which shows that measuring A f and Ag gives the configurational entropy [9]

Sc(z) = k ln{Ng(z)}, (2)

and counts the number Ng(z) of glasses, configurations [9], potential energy minima [1, 2] or
basins, of the type z(V , T ), that have the same energy and pressure as the fluid at the same
volume V and temperature T . k is the Boltzmann constant. The internal parameter [10] z is
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included to distinguish between glasses that have different properties at the same V and T .
Measuring Ng(z) quantifies the broad structure of the landscape.

In studies of the density landscape in simple models such as hard spheres [11], hard discs
[12, 13] and saturated square-well [7] particles, the internal parameter, z, was chosen to be the
density of a glass at its close-packed limit. In studies of the energy landscape on isochores in
the simulated models of Lennard-Jones fluids [8, 14, 15], orthoterphenyl [16], water [17, 18]
and silica [19], z was chosen to be the energy of a glass at zero temperature. With the exception
of those for silica [19], all the results are consistent with a Gaussian distribution [7, 20]:

Ng(z) = exp{N[α − γ (z − zm)2]} (3)

which is the result expected from the central limit theorem if each macroscopic glass is
viewed as a collection of many uncorrelated microscopic parts. For Lennard-Jones models the
constants, α, γ, zm in equation (3), vary with density [15], so the distribution depends on both
density and energy.

To get some insight into how the density and energy landscapes might be combined into
a unified picture, we examine a soft-sphere model in which the density dependence of the
isochoric potential energy landscape is predictable.

In condensed phases at high pressure, the interaction between molecules is dominated
by repulsions and the properties of crystals, glasses and dense fluids might be captured by a
soft-sphere model [21]. We show that the form of a supercooled soft-sphere fluid equation of
state can be predicted with two simple assumptions:

(1) that the glasses are harmonic and
(2) that the number of glasses conforms to equation (3) with an appropriate choice of z.

These assumptions provide a model for the dense states of matter, which includes an ideal
thermodynamic glass transition as the low-temperature limit of the fluid state.

Adding a van der Waals attractive potential to the model yields a liquid–gas spinodal line
as the upper temperature limit to the liquid state. The spinodal and ideal glass lines meet with
the same slope at the maximum tension that the metastable stretched liquid can sustain. The
harmonic approximation is not accurate above the equilibrium freezing temperature but the
model can be extended to higher temperatures, to describe a gas and boiling more accurately,
by using pressures measured by computer simulations of a soft-sphere fluid.

2. Soft spheres

Hoover et al [21] studied a crystal and fluid of soft spheres defined by the pair potential

u(r) = ε(σ/r)n (4)

where u(r) is the potential energy of interaction between two spheres separated by r and where
ε, σ and n > 3 are constants.

A special property [21] of this potential is that if any configuration, rN , of N spheres in a
volume V0 with potential energy E(V0) is expanded uniformly to a new volume V , such that
all the pair separations change by a factor of (V/V0)

1/D , where D is the spatial dimension, the
new potential energy is E(V ) = (V0/V )n/D E(V0). Hoover et al [21] show that, for potentials
with this property, the excess free energy depends on a single independent variable. We need
not repeat their derivation [21], but merely state the result.

A reduced excess free energy, a(x), is defined by

a(x) ≡ A(N, V , T ) − Aig(N, V , T )

RT
(5)
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where A and Aig are the Helmholtz free energies of the soft-sphere model and an ideal gas,
respectively, and R = Nk is the gas constant. The free energy of an ideal gas of structureless
particles is

Aig(N, V , T ) = −RT ln

{
V e

N�D

}
(6)

where � = (h2/2πmkT )1/2 is the de Broglie wavelength, h is Planck’s constant and m is the
mass of a particle. The hybrid independent variable is defined by

x ≡ (V0/V )(ε/kT )D/n (7)

where V0 is any reference volume.
The important point is that, for soft spheres, a(x) depends only on x , regardless of whether

x changes by varying T or by varying V . Consequences of that scaling are that the total energy,
U = (∂(A/T )/∂(1/T ))V , is

U

RT
= D

2
+

D

n
x

da(x)

dx
(8)

and the pressure, P = −(∂ A/∂V )T , is

PV

RT
= 1 + x

da(x)

dx
. (9)

3. Harmonic solids

Simulations show that crystals and glasses of soft spheres are nearly harmonic. Hoover et al
[21] included anharmonic corrections to fit precise simulation results for a soft-sphere crystal,
but the corrections are small and they are ignored here.

The Helmholtz free energy of a classical harmonic solid, in which each particle moves
independently in a harmonic well, is [22]

A(V , T, z) = U(V , 0, z) + DRT ln{θ(V , z)/T } (10)

where θ(V , z) is a volume-dependent Einstein temperature, U(V , 0, z) is the energy at zero
temperature and z is an internal parameter needed to distinguish between crystals and glasses
with different properties. It would be more realistic to express the free energy in terms of the
lattice vibration frequencies, νi , i = 1, . . . , 3N − 3, but that is not important for the present
purpose because equation (10) is regained if an effective Einstein temperature is defined by
θ ≡ hν̄/k, where ν̄ is the geometric mean of the νi . It would also be more realistic to
use the quantum mechanical, rather than classical, form of equation (10) but the classical
form is appropriate for the following comparisons with classical simulation results. The
quantum mechanical form is approximated by equation (10) when θ/T � 1. Simple harmonic
models for solids do not account for volume changes [22], but Grüneisen [23] showed how
thermal expansion can be explained by allowing for the volume dependence of the vibrational
frequencies.

The internal parameter, z, is chosen to be the dimensionless energy of a crystal or glass at
zero temperature, and at a reference volume V0,

z ≡ U(V0, 0, z)/Nε = (V/V0)
n/DU(V , 0, z))/Nε. (11)

With this choice, z is a constant, independent of volume and temperature, for a particular
crystal or glass, and the constants α, γ, zm in equation (3) do not vary with density.
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4. Harmonic solids of soft spheres

The scaling implied by equations (5)–(7) requires [21] that the Einstein temperature in
equation (10) varies with volume as

kθ(V , z)/ε = b(z)(V0/V )(n/2+1)/D (12)

where b(z) is a dimensionless constant for a particular solid but might vary with z.
Equations (5), (10)–(12) give the excess free energy of a harmonic solid of soft spheres as

as(x, z) = zxn/D + (n/2) ln{x} − S0(z) (13)

where S0(z) is constant for a particular glass or crystal, but might vary with z if b(z) in
equation (12) changes with z. For a classical solid it is necessary to measure the entropy to
determine S0(z) [24].

Equations (8), (9), (13) give the energy and pressure of harmonic solids of soft spheres:

U

RT
= D + zxn/D (14)

PV

RT
= 1 + n/2 + (n/D)zxn/D . (15)

Equations (14), (15) are useful at low temperature and volume (large x) but the harmonic
approximation breaks down at high temperature and volume. For instance, equation (15)
requires that PV/RT � n/2 + 1 at high volume or temperature, which is unphysical.

5. Soft-sphere fluids

The excess free energy of the fluid, from equations (1) and (5), is

a f (x) = ag(x, z) − Sc(z)/R (16)

and the configurational entropy, from equations (2) and (3), is

Sc(z)/R = α − γ (z − zm)2. (17)

The equilibrium value of z(x) minimizes the free energy of the fluid [10], so

(∂[ag(x, z) − Sc(z)/R]/∂z)x = 0. (18)

Equations (13), (16)–(18) give

z(x) = zm + (dS0/dz)/2γ − xn/D/2γ (19)

which is the value of z(x) for those glasses that have the same energy and pressure as the
equilibrium fluid at x . To simplify the following equations, it is assumed that dS0(z)/dz is
either constant or small enough to neglect. If it is constant, then zm + (dS0/dz)/2γ is constant
and the form of the equations that follow is not changed if zm is redefined to absorb the constant
(dS0/dz)/2γ . The assumption needs further study.

The energy and pressure of the fluid are the same as those of a glass, from
equations (14), (15) with z(x) from equation (19), so, for the fluid,

U

RT
= D + (zm − xn/D/2γ )xn/D (20)

PV

RT
= 1 + n/2 + (zm − xn/D/2γ )(n/D)xn/D . (21)

Equation (15) shows that (PV/RT − 1 − n/2)/xn/D is constant in a harmonic solid
and equation (21) predicts that it varies linearly with xn/D in the fluid. Figure 1 tests these
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Figure 1. (PV/RT − 1 − n/2)/xn/D versus xn/D for a soft-sphere fluid and glass (D = 3, n =
12, V0 = Nσ 3). The dashed curve for the fluid is calculated from a polynomial (equation (13)
from [25]) which fits the equilibrium fluid (x4 � 1.75) pressure precisely but is less accurate [25]
for the supercooled fluid. The dashed curve for the glass is from [33]. The straight solid lines
show the forms predicted by equation (15) with z = 1.72 for the glass and equation (21) with
zm = 1.86, γ = 20 for the fluid. Hoover et al [21] locate the equilibrium freezing point at
x4 = 1.75. Cape and Woodcock [25] locate the kinetic glass transition near x4 ≈ 5 and the
Kauzmann point, where the fluid entropy extrapolates to that of the crystal, near x4 ≈ 7.

predictions for a one-component fluid and glass of soft spheres and shows that equation (21)
fits the supercooled fluid data between the freezing point and the glass transition. The
failure of equation (21) at higher temperature (smaller x) is expected because the harmonic
approximation breaks down when x is small. Hoover et al [21] and Cape and Woodcock [25]
note that the superheated crystal is unstable near the freezing temperature, even on very short
timescales, and it seems likely that glasses are also unstable there.

Equation (15) fits the soft-sphere crystal pressures [21, 25], to within about twice the
uncertainty in the measurements, with z = 1.48.

The one-component fluid is prone to freezing and more precise data are available for
mixtures. Figure 2 shows the results of Yu and Carruzzo [26] for an equimolar binary mixture
of soft spheres with diameters in the ratio 1.4. The equilibrium freezing temperature for this
mixture has not been determined, but it is likely that equation (21) fits all the supercooled fluid
measurements.

Figure 3 shows Perera’s [27] results for an equimolar binary mixture of soft discs with
diameters in the ratio 1.4. In this case the freezing point has been located [27] and the figure
confirms that equation (21) fits all the supercooled fluid measurements precisely.

6. Soft spheres with van der Waals attractions

One modified van der Waals equation of state [28] is

P = Pss − a(V0/V )2 (22)

with Pss the pressure of the soft-sphere crystal, fluid or glasses. Including the attractive
term −a(V0/V )2 allows the model to describe a liquid–gas transition. Because the harmonic
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Figure 2. (PV/RT − 1 − n/2)/xn/D versus xn/D for an equimolar binary soft-sphere mixture
(D = 3, σb/σs = 1.4, n = 12, V0 = N(σ 3

b + σ 3
s )/2). Circles show simulation data from [26].

The straight solid lines show the forms predicted by equation (15) with z = 0.75 for the glass and
equation (21) with zm = 0.92, γ = 16 for the fluid.

Figure 3. (PV/RT − 1 − n/2)/xn/D versus xn/D for an equimolar binary soft-disc mixture
(D = 2, σb/σs = 1.4, n = 12, V0 = N(σ 2

b + σ 2
s )/2). Circles show simulation data from [27]

(table 4.2 of [27]) and the dashed curve is calculated from a polynomial (equation (4.6) of [27])
which fits the fluid (x6 � 5) pressure with a maximum deviation of 0.3% (which corresponds to
about four times the symbol size in the figure). The straight solid lines are the forms predicted by
equation (15) with z = 1.39 for the glass and equation (21) with zm = 1.45, γ = 42 for the fluid.

approximation breaks down above the freezing temperature, the simple model with Pss given
by equations (15) or (21) does not describe a gas accurately.

Figure 4 shows the form of the liquid stability limits predicted by equations (21), (22) in
the pressure–temperature plane. The results shown are for x4 > 2 where figure 1 suggests that
equation (21) is reliable. The model predicts an ideal glass transition [9, 29] where Sc(z) → 0.
Along the ideal glass transition curve, z = zm −√

α/γ (from equation (17)) and xn/D = 2
√

αγ
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Figure 4. The ideal glass transition curve, Sc = 0, and the spinodal curve for soft spheres
in the pressure–temperature plane when x4 � 2, from equations (21), (22) with constants
zm = 1.86, γ = 20 (from figure 1) and α = 1.06 [30, 31].

(from equation (19)). The values γ = 20, from figure 1, and an estimate [30] α = 1.06 which
is in good accord with estimates from a simulation experiment [31] are used. Adding the mean-
field attractive potential to the soft-sphere model does not affect the entropy, so the ideal glass
transition is located where xn/D = 2

√
αγ ≈ 9.2. The spinodal curve, where (∂ P/∂V )T → 0,

is calculated from equations (21), (22).
The ideal glass curve is the low-temperature limit of the metastable liquid state and the

spinodal curve is the upper temperature limit. The two curves meet with the same slope at the
maximum tension (negative pressure) that the metastable liquid can sustain [32].

Figure 5 shows the prediction of equations (21), (22) at higher temperatures and compares
them with a more accurate estimate of the spinodal.

A thermodynamic argument was presented [32] to explain why the curves in figure 4 meet
with the same slope. That argument may be flawed in general, but if a single internal parameter
is sufficient to distinguish between glasses, which is evidently true for hard spheres and soft
spheres, then the curves of constant Sc(z) must meet a spinodal with the same slope in the
P, T plane. That is because a curve of constant Sc(z) is also a curve of constant z, so the fluid
samples the same glasses all along the curve. But if Sc(z1, z2) depends on two parameters
[10], then z1 and z2 may vary along a curve of constant Sc(z1, z2) and the argument becomes
more complicated, because changing z1 and z2 changes one glass into another, which is not a
reversible process in the thermodynamic sense.

7. Summary

For soft spheres, the number of minima on the potential energy landscape is independent of
the volume, and the shape of each basin in the potential energy landscape varies with volume
in a predictable way. Two elementary assumptions:

(1) that the basins are harmonic and

(2) that the distribution of basin depths is Gaussian,
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Figure 5. As figure 4, but extended to higher temperatures where equation (21) is inaccurate
(figure 1). The more accurate dashed spinodal curve is calculated using equation (13) from [25] for
Pss in equation (22). The axes are scaled using the critical pressure, Pc, and critical temperature,
Tc , from the equation from [25].

lead to a simple model for the cold dense states of matter: crystal, glasses, the supercooled
fluid and the glass transition.

The model agrees with simulation data at temperatures below freezing but fails above the
freezing temperature, where the harmonic approximation breaks down.
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